

Travis Lindsay Master's Defense Department of Chemical & Biological Engineering May 2023

"Single cell encapsulation, detection, and sorting of pseudomonas syringae using drop-based microfluidics"

Abstract:

Bacteria can survive antibiotic or bactericidal treatment through genetic mutations. Even within bacterial populations that are fully susceptible to treatment, a small proportion of cells can have enhanced survival capacity in a phenomenon called persistence. Traditional microbiology methods can fail to identify or isolate these persister cells present within the population. A novel method for high-throughput single cell analyses of microbial populations is that of drop-based microfluidics, in which individual cells can be isolated within picoliter-sized drops. In this work, fluorescent detection and dielectrophoresisbased sorting of drops was developed for isolating Pseudomonas syringae persister cells following antimicrobial treatment. We demonstrate: (1) the dielectrophoresis-based sorting of dye-filled 25 µm drops based upon two colors, (2) differences between laser-induced fluorescent detection of dyes compared to single bacterial cells, (3) single-cell isolation of P. syringae into 25 µm droplets with ~10% of droplets containing single-cells, and (4) the treatment, staining, and fluorescent characterization of P. syringae at 0.5', 5', and 50' the minimum inhibitory concentration of carbonyl cyanide m-chlorophenyl hydrazone (CCCP), an antibiotic which resulted in 6.2%, 10.2%, and 88.6% cell death of the population, respectively. These results provide the groundwork for studying antibiotic-treated P. syringae and the isolation of surviving cells that will lend insight into the molecular basis of persistence for preventing recurrent infections and decreasing the likelihood of antibiotic resistance.

Center for Biofilm Engineering

366 Barnard Hall P.O. Box 173980 Bozeman, MT 59717-3980

www.biofilm.montana.edu

 Tel
 406-994-4770

 Fax
 406-994-6098

 cbeinfo@biofilm.montana.edu

Mountains & Minds